An Overview of the Neurobiology of Autism

Christopher J. McDougle, M.D.
Director, Lurie Center for Autism
Professor of Psychiatry and Pediatrics
Massachusetts General Hospital and
MassGeneral Hospital for Children
Nancy Lurie Marks Professor in the Field of Autism
Harvard Medical School

• I have no relevant financial relationship with the manufacturers of any commercial products and/or providers of commercial services discussed in this CME activity.

• Neither I nor any member of my immediate family has a financial relationship or interest with any proprietary entity producing health care goods or services related to the content of this CME activity.

• My content will include reference to commercial products; however, generic and alternative products will be discussed whenever possible.

• I do not intend to discuss any unapproved or investigative use of commercial products or devices.
What is the Cause of Autism?

• Background
• Genetic Contributions
• Where is the Lesion?
• Neurochemistry
• Immune Factors

Diverse Autistic Symptoms Makes Search for Biomarkers Difficult

Core Symptoms
• Poor Eye Contact
• Impaired Social Reciprocity
• Impaired Communication
• Echolalia
• Need for Sameness
• Stereotypies

Associated Symptoms
• ADHD symptoms
• Irritability
• Anxiety
• Insomnia
• Intellectual Disability
Heterogeneity Complicates Research

• Range of Autistic Severity
• Range of Intellectual Ability
• Possible differences among phenotypic subtypes
 – Autistic disorder (autism)
 – Asperger’s disorder
 – PDD NOS (atypical autism)
• Might heterogeneity lead to missed findings?

Autistic Regression

• 25-30% of children with autism
• Loss of language and/or social at 15-30 months
• Doesn’t necessarily imply environmental “hit”
• Possible links
 – Gastrointestinal symptoms
 – Autoimmunity
 – Sleep
 – Epileptiform activity on EEG

Werner & Dawson (2005) Arch Gen Psychiatry
Autism is Genetic

- Autism is one of the most heritable disorders in neuropsychiatry
- Twin Studies: monozygotic concordance rates as high as 60 to 90%
 - Compared to 5% risk in dizygotic twins/siblings
 - Compared to 1.0% in general population
- Family Studies: increased risk of social and communication problems in family members (broader autism phenotype)

Genetic Syndromes Associated with Autism

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Genetic associated with the syndrome</th>
<th>Proportion of patients with the syndrome that have an ASD</th>
<th>Proportion of patients with an ASD that have the syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>15q duplication—Angelman syndrome</td>
<td>UBE3A (and others)</td>
<td>>10%</td>
<td>1–2%</td>
</tr>
<tr>
<td>16p11 deletion</td>
<td>Unknown</td>
<td>High</td>
<td>-1%</td>
</tr>
<tr>
<td>22q deletion</td>
<td>SHANK1</td>
<td>High</td>
<td>1%</td>
</tr>
<tr>
<td>Cortical dysplasia-focal epilepsy</td>
<td>CNTNAP2</td>
<td>~70%</td>
<td>Rare</td>
</tr>
<tr>
<td>Fragile X syndrome</td>
<td>FMR1</td>
<td>25% of males; 6% of females</td>
<td>1–2%</td>
</tr>
<tr>
<td>Joubert syndrome</td>
<td>Several loci</td>
<td>25%</td>
<td>Rare</td>
</tr>
<tr>
<td>Potocki–Lupski syndrome</td>
<td>Chromosome position 17p11</td>
<td>~10%</td>
<td>Unknown</td>
</tr>
<tr>
<td>Smith–Lemli–Opitz syndrome</td>
<td>DHLA1</td>
<td>50%</td>
<td>Rare</td>
</tr>
<tr>
<td>Rett syndrome</td>
<td>MECP2</td>
<td>All individuals have Rett syndrome</td>
<td>~0.5%</td>
</tr>
<tr>
<td>Timothy syndrome</td>
<td>CACNA1C</td>
<td>60–80%</td>
<td>Unknown</td>
</tr>
<tr>
<td>Tuberosis sclerosis</td>
<td>TSC1 and TSC2</td>
<td>20%</td>
<td>-1%</td>
</tr>
</tbody>
</table>

Abrahams & Geschwind (1997) Am J Psychiatry
Copy Number Variation (CNV)

- The deletion or insertion of a DNA segment
- More or less than 2 copies of a particular gene may result
- Can be inherited or de novo
- Distinct from concept of single nucleotide polymorphisms (SNPs)
- Can identify rare variants that through CNV either
 - greatly modify risk of autism
 - cause specific syndrome ("an autism")

CNV Findings in Autism

- Comparative genomic hybridization (CGH) on subjects with autism and controls
- Confirmed de novo CNVs
 - 10% from simplex families
 - 3% from multiplex families
 - 1% from controls
- Microdeletions of 16p11
 - May occur in 1% of persons with autism
 - Exceedingly rare in controls
 - ? Specificity since also found in intellectual disability without autism

Where is the Lesion?

Meta-Analysis of Head Circumference and MRI Studies
Autism-Neuroimaging

- Increase in cerebral grey and white matter (9-15% increase in children ages 2 and 3 years)
- Inconsistent results regarding localization
- Possible white matter abnormalities using diffusion tensor imaging (DTI)

Courchesne et al (2001) *Neurol*

Autism and the Cerebellum

- Cerebellum enlarged in 2- and 3-year olds, but decreased in older children
- 30% reduction in number of purkinje cells in postmortem cerebellum (ages 4-67 y)
- Conflicting views regarding contribution of neurodegeneration and neuroimmune factors in loss of purkinje cells

Courchesne et al (2001) *Neurol*
Autism and Temporal Lobes

• Increase in autism in tuberous sclerosis when tubers are present in temporal lobes
• Multiple case reports of acquired autism secondary to herpes simplex encephalitis which primarily affects temporal lobes

Autism and Fusiform Gyrus

• Fusiform Face Area is hypoactive in fMRI studies involving face identification

fMRI Studies

• Amygdala hypoactive in fMRI studies involving social perception and cognition

Mirror Neurons and Autism

• Neurons that activate while doing or observing doing
• Studied in macaque monkeys (inferior frontal gyrus and inferior parietal lobule)
• EEG differences (lack of mu suppression) over sensorimotor cortex while watching in autism
• Decreased inferior frontal gyrus activity by fMRI during observing and imitating facial expressions

Neurochemistry of Autism

• 5-HT
• GLU
• GABA
• OXYTOCIN
• MELATONIN

Serotonin
(5-Hydroxytryptamine; 5-HT)

• 5-HT neurons widely distributed in brain
• 5-HT one of the earliest systems to develop
• Turnover of 5-HT highest in immature brain
• Directs proliferation and maturation of brain
Blood measurements

- Consistent finding of hyperserotonemia in approximately 1/3 of prepubertal autistic children (Schain & Freedman, 1961)
 - Age and race factors are important
- Replicated in numerous studies
- Meaning of the result remains uncertain - ? Compensatory change related to reduced brain 5-HT function; abnormal maturation
5-HT challenge studies

- Acute Tryptophan Depletion
- TRYP is essential AA for 5-HT production
- Administration of TRYP-free AA mixture results in significant reduction of 5-HT in plasma and 5-HIAA in CSF in 5 hours
- 11/17 adults with autism worse with TRYP depletion vs. 0/17 worse with sham depletion

McDougle et al (1996) Arch Gen Psychiatry

Imaging 5-HT

- PET Studies have demonstrated age-related differences in 5-HT synthesis
 - Controls: 5-HT synthesis 2X higher in preschool children compared to adults with subsequent decline past age 5 years
 - Autism: 5-HT synthesis gradually increases throughout childhood (2-15 years) and only reaches 1.5X adult values

Serotonin Transporter Gene (SLC6A4)

- Encodes 5-HT Transporter
- Conflicting findings regarding association with autism
 - Long variant
 - Short variant
 - No association
- Possible association between autism subtypes (rigid compulsive behavior)
- Possible association with cortical gray matter volume

Glutamate and GABA

Glutamate
Excitatory neurotransmitter

GABA
Inhibitory neurotransmitter

GAD
Glutamate Abnormalities

- Elevated peripheral glutamate levels in majority of studies
- Elevated glutamate/glutamine in amygdala-hippocampal region by MRS

GRIK2

- Glutamate Receptor 6 (GRIK2) shows linkage in many, but not all studies
- Homozygous mutation linked to autosomal recessive mental retardation in one family

GABA Abnormalities

- Decreased number of GABA receptors in postmortem hippocampus
- Decreased GABA subunit expression in cerebellum, superior frontal cortex, and parietal cortex
- GABA-A Receptor Beta 3 (GABRB3) gene (encodes subunit of GABA-A receptor) linked to autism in some, but not all studies
- GABRB3 Found in 15q11-13 region
 - Autism (linkage)
 - Prader-Willi Syndrome (paternal copy deletion)
 - Angelman Syndrome (maternal copy deletion)
 - Isodicentric chromosome 15 (duplicated genetic material)

Glutamic Acid Decarboxylase (GAD)

- GAD polymorphisms not associated with autism
- Decreased GAD mRNA and GAD protein levels in postmortem cerebellum and parietal cortex

Oxytocin

- Importance in formation of monogamous pair bonds (Voles)
- Importance in maternal attachment
- Increases trust in others
- Decreases amygdala activation and fear response

Nair & Young (2006) Physiology

Oxytocin in Autism

- Plasma oxytocin levels low in children with autism
- Intravenous (IV) oxytocin led to reductions in repetitive behavior in adults with autism
- IV oxytocin led to possible improvement in affective speech comprehension in adults with autism
- Intranasal oxytocin in autism studies have begun

Melatonin in Autism

- Synthesized in the pineal gland
- $5\text{-HT} \rightarrow \text{N-acetyl}(5\text{-HT}) \rightarrow \text{Melatonin}$
- Decreased melatonin secretion during dark phase
- Decreased urinary 6-sulphatoxymelatonin
- Widespread clinical use of melatonin for sleep disturbance
- Ongoing clinical trials of melatonin for insomnia in autism

Immune Factors in Autism

- Inconsistent findings regarding exposure to various viruses as risk factor for autism
- No vaccine-autism link
 - No link to MMR vaccine
 - No link to Thimerosal
 - Evidence against alternative vaccine theories
 - Evidence against theory that vaccines overwhelm or weaken immune system

Neuroimmune Studies

- Neuroinflammation and neuroglial activation in postmortem samples
- Inconsistent findings regarding antibodies to specific brain proteins

Mean Number of Family Members with Autoimmune Disease per Family

PDD > Autoimmune (p=.03)
PDD > Healthy (p=.000003)
Number of Families in Each Group with a Specific Autoimmune Disease

<table>
<thead>
<tr>
<th></th>
<th>PDD (n=101)</th>
<th>Autoimmune (n=101)</th>
<th>Healthy (n=101)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatic Fever</td>
<td>23</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Hypothyroidism/Hashimoto’s</td>
<td>36</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>

PDD > Controls (p < .05)

NEOPTERIN

- Metabolite produced in high amounts by monocytes and macrophages
- Marker for cell-mediated immune activation
- Blood and urine levels are increased in:
 - Autoimmune disease
 - Infectious disease
 - Cancer

![Diagram of Neopterin Metabolism](image)

- IFN
- GTP
- (GTPCH)
- Neopterin
- Monocyte/Macrophage
Increased Monocyte Count in Children with Autism

p = .049

Increased Plasma Neopterin Levels by ELISA in Children with Autism

p<0.00008
What is the Underlying Cause of Autism?

• Autism is clearly genetic
 – Multiple genes acting together
 – Epigenetics (changes in gene expression)
 – Increased identification of specific genetic syndrome associated with autism

• Environmental contributions may also be important
 – Complex interactions with genes and neurodevelopment

• fMRI reveals abnormalities in fusiform face area and amygdala

What is the Underlying Cause of Autism?

• 5-HT abnormalities
 – Peripheral blood
 – PET
 – Challenge Studies

• Emerging evidence of glutamatergic and oxytocin abnormalities

• Immune system activation may also play a role
Lack of Singular Neurobiology

- Heterogeneity of “the autisms”
- Complexity of neurodevelopmental disorders
- Innate challenges of research
 - Low prevalence of ASDs
 - Age of onset
 - Communication and cognitive limitations
 - Importance of choosing suitable controls to account for specificity of findings

Acknowledgments

- National Institute of Mental Health
- Autism Speaks
- National Institute of Child Health and Human Development
- Nancy Lurie Marks Family Foundation
- The Robert and Donna Landreth Fund
Lurie Center for Autism

- Christopher J. McDougle, MD
- Ann Neumeyer, MD
- Timothy Buie, MD
- Susan Connors, MD
- Nora Friedman, MD
- Jessica Helt-Cameron, NP
- Charles Henry, MD
- Yamini Howe, MD
- Katherine Martien, MD
- Michelle Palumbo, MD
- Laura Politte, MD
- Ron Thibert, MD
- Gillian Erhabor, PhD
- Lisa Nowinski, PhD
- Julia O’Rourke, PhD, MS

http://www.massgeneral.org/children/services/treatmentprograms
(781)-860-1700

LURIE CENTER FOR AUTISM

Christopher J. McDougle, M.D.
CMCDOUGLE@PARTNERS.ORG
781-860-1700