Clinical Update on the Management of Schizophrenia

L. Fredrik Jarskog, M.D.

Professor of Psychiatry

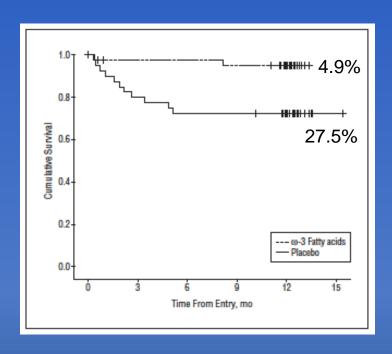
Research Director, North Carolina Psychiatric

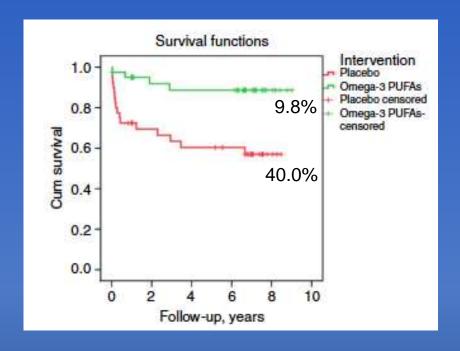
Research Center

UNC-Chapel Hill

Disclosures

Past 3 years:

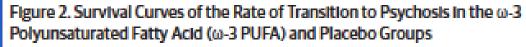

- Research funding: Auspex/Teva, Boehringer-Ingelheim, Otsuka, NIH
- Consulting: Roche, Clintara/Bracket
- Speakers bureau: none
- Stock ownership: none

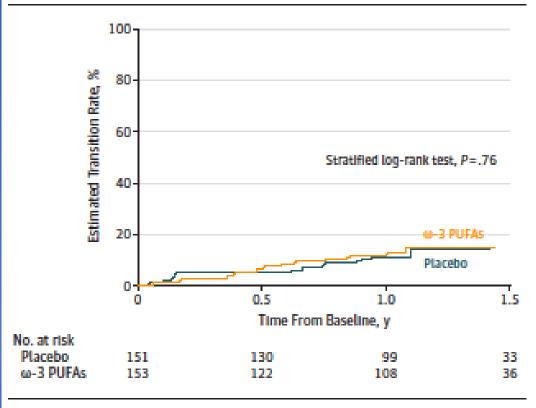

Outline

- Psychosis prodrome
- Antipsychotic monotherapy
 - Comparative efficacy
 - Clozapine
- Negative symptom treatment
- Antipsychotic augmentation strategies
- Antipsychotic side-effect management
 - Tardive Dyskinesia
 - Weight gain

Omega-3 polyunsaturated fatty acid (PUFA) supplementation to prevent conversion to psychosis

 81 people at ultra-high risk for psychosis were randomized to 12 wks of 1.2 g/day omega-3 PUFA or placebo



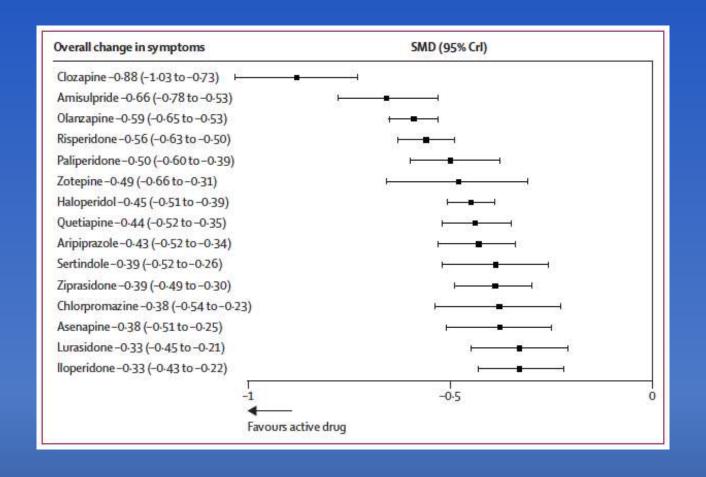


Amminger et al., Arch Gen Psychiatry 2010; 67: 146-154

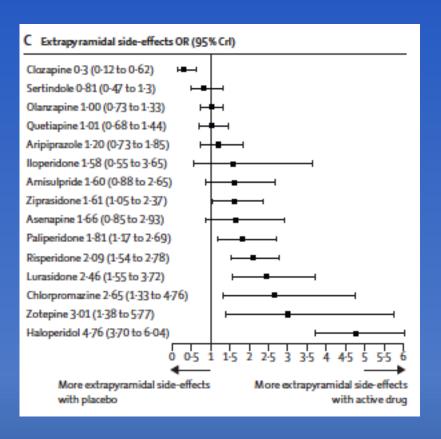
Amminger et al., Nat Commun 2015; Aug 11; 6: 7934

Replication attempt of omega-3 PUFA for people at ultrahigh risk for psychosis

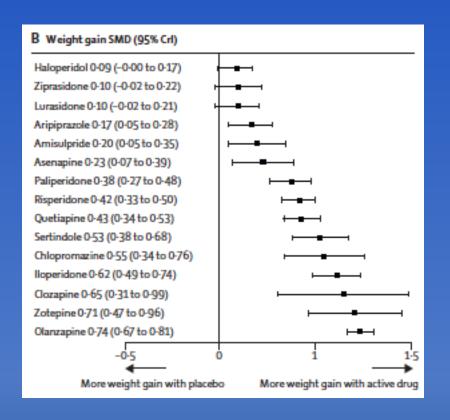
Transition rates:


Omega-3: 6.7%

Placebo: 5.1%

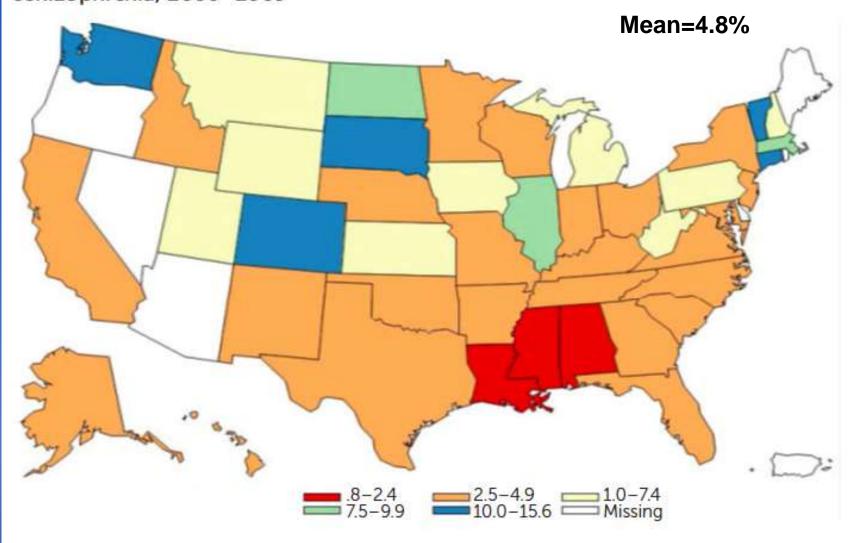

Comparative Efficacy of APDs for Treatment of Schizophrenia

- Hierarchical efficacy comparison was performed using a multiple-treatments meta-analysis
- Blinded RCTs of patients with schizophrenia or related psychotic d/o were included
- To maximize participant homogeneity, trials were excluded that focused primarily on:
 - Clinically stable patients (e.g. relapse prevention studies)
 - Patients with predominant negative symptoms
 - Patients with concomitant medical illness
 - Treatment-resistant patients
- 212 RCTs with 43,049 participants were identified

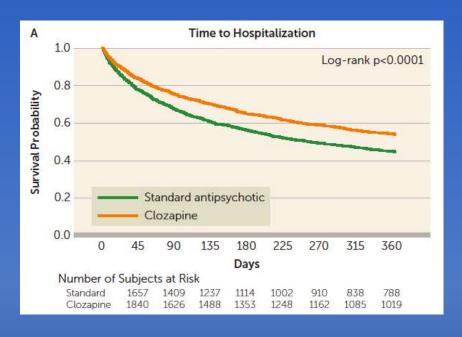

Efficacy of APDs Compared to Placebo

Effect Sizes of APDs Compared to Placebo for EPS

Effect Sizes of APDs Compared to Placebo for Weight Gain


Leucht et al., Lancet 2013; 382: 951-962

Clozapine Underutilization


- It is estimated that at least 30% of patients with schizophrenia have persistent positive symptoms and significant functional disability despite treatment with optimized doses of non-clozapine antipsychotics.
- These patients have treatment-resistant schizophrenial and are potential clozapine candidates

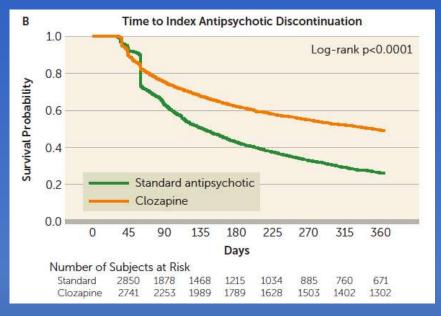

(reviewed by Hasan et al., World J Biol Psychiatry 2012; 13: 318-378)

FIGURE 1. Clozapine prescribing rates among Medicaid-insured adults with schizophrenia, 2006–2009

U.S. National Medicaid data 2001-2009 for people with treatment-resistant schizophrenia who started clozapine versus a standard antipsychotic

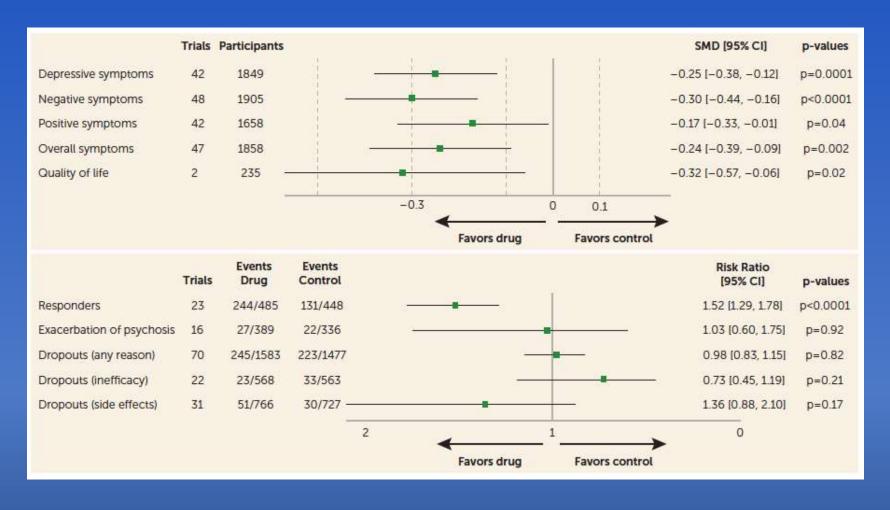
Comparative efficacy of APDs for Treatment-Resistant Schizophrenia (TRS)

- Integrate all RCT evidence of available APDs studied for TRS using a network meta-analysis
 - Allows comparison of relative effectiveness among all APDs that have been compared in at least 1 RCT, even if they have not been compared directly, as long as they are part of a connected network
- 40 blinded RCTs, N=5,172 people with TRS were included in the analysis
- Primary outcome: overall change in symptoms

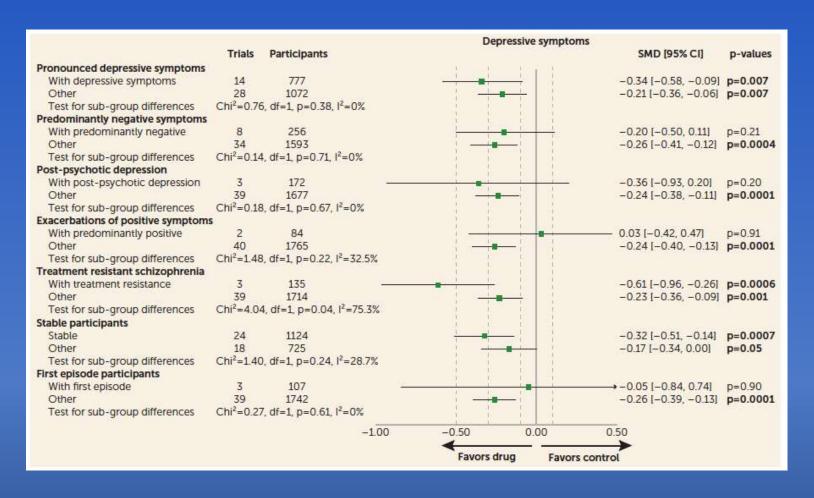
Efficacy of APDs in TRS: a Network Meta-analysis

Clozapine, olanzapine, risperidone showed a pattern of superiority with small effects

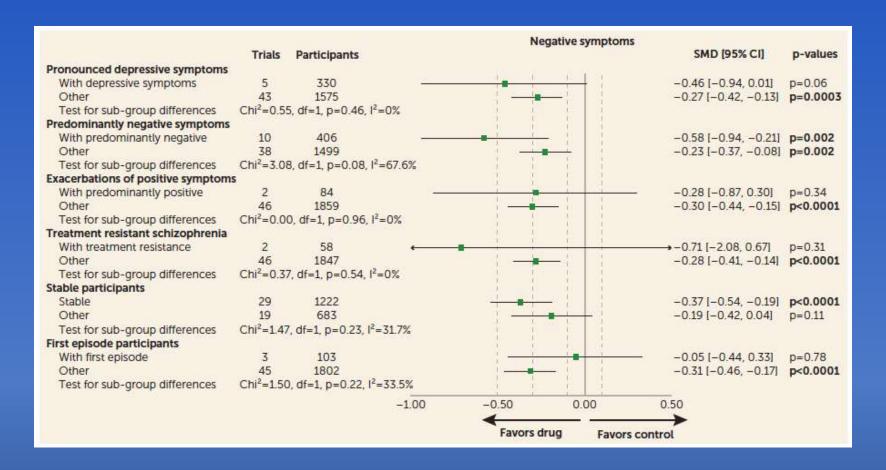
Clozapine did not demonstrate overall superiority


Samara et al., JAMA Psychiatry; 2016; 73: 199-210.

	No. of	26 48	Favors	Favors
Clozapine Comparator	Patients	SMD (95% CI)	Clozapine	Comparato
Chlorpromazine	10.1001			
Hong et al, ⁵⁷ 1997	40	-0.44 (-1.07 to 0.19)		†
Honigfeld et al, ⁵³ 1984	125	-0.64 (-1.00 to -0.28)		
Kane et al, ^{5,6} 1988	265	-0.88 (-1.13 to -0.63)		
Total	430	-0.75 (-0.97 to -0.53)		
$\tau^2 = 0.01; \chi_2 = 2.27; P = .32$	$2; 1^2 = 12\%$			
Haloperidol				
Buchanan et al,7 1998	75	-0.14 (-0.59 to 0.31)	-	-
Kane et al,58 2001	34	-0.26 (-0.98 to 0.46)		<u> </u>
Rosenheck et al,8 1997	423	-0.23 (-0.42 to -0.04)		
Volavka et al, ⁵⁹ 2002	77	0.13 (-0.31 to 0.57)		
Total	609	-0.17 (-0.33 to -0.01)	•	>
$\tau^2 = 0.00$; $\chi_2 = 2.19$; $P = .53$	3;12=0%			
Olanzapine				
Bitter et al,60 2004	140	-0.01 (-0.34 to 0.32)	-	_
Conley et al, 61 2003	13	-0.55 (-1.69 to 0.59)		<u> </u>
Meltzer et al, 62 2008	40	0.03 (-0.59 to 0.65)	- ·	
Moresco et al, 63 2004	15	-0.43 (-1.48 to 0.62)		
Naber et al, ⁶⁴ 2005	108	0.08 (-0.30 to 0.46)	18	
Tollefson et al,65 2001	176	0.14 (-0.16 to 0.44)		
Volavka et al, ⁵⁹ 2002	79	0.47 (0.02 to 0.92)		
Total	571	0.10 (-0.07 to 0.27)		
$\tau^2 = 0.00; \chi_2 = 5.36; P = .50$		0.20 (0.07 10 0.27)		
Risperidone	7.1 2/9			
Azorin et al, ⁵⁶ 2001	256	-0.33 (-0.58 to -0.08)		
Bondolfi et al, 66 1998	86	0.18 (-0.25 to 0.61)		
Breier et al, 67 1999	29	-0.44 (-1.18 to 0.30)		
McGurk et al, ⁶⁸ 2005	52	0.03 (-0.52 to 0.58)		
Volavka et al, ⁵⁹ 2002	81	0.25 (-0.18 to 0.68)		
Wahlbeck et al, 69 2000	19	0.63 (-0.29 to 1.55)		
Total	523	0.00 (-0.29 to 0.29)		
$\tau^2 = 0.07$; $\chi_2 = 10.92$; $P = .0$		0.00 (-0.23 to 0.23)		
Ziprasidone	JJ, 1 - J470			
Sacchetti et al, ⁷⁰ 2009	144	0.03 / 0.31 to 0.35)		
= 1	144	0.02 (-0.31 to 0.35)		
Total	144	0.02 (-0.31 to 0.35)	_	
$\tau^2 = 0.09$; $\chi_2 = 67.75$; $P < .0$				
Combined	2277	-0.11 (-0.28 to 0.06)	<	>
			-2 -1	0 1
			SMD (95% CI)

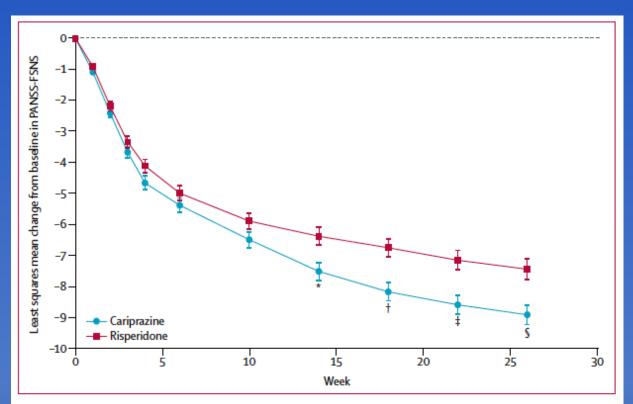

Role for Antidepressants in Schizophrenia Treatment?

- Depression and negative symptoms are prevalent in patients with schizophrenia and these contribute to significant functional impairment
- ~30% of patients with schizophrenia are prescribed antidepressant medication
- APA guidelines endorse management of depressive and negative symptoms with antidepressants
- However, the 2009 Schizophrenia Patient Outcomes Research Team (PORT) and the 2014 British NICE guidelines do not recommend their use, based on limited evidence (Buchanan et al., Schizophr Bull 2010; 36: 71-93; http://guidance.nice.org.uk/CG178)


Antidepressants for Depressive and Negative sxs in Schizophrenia

Subgroup analysis for effects on depressive symptoms

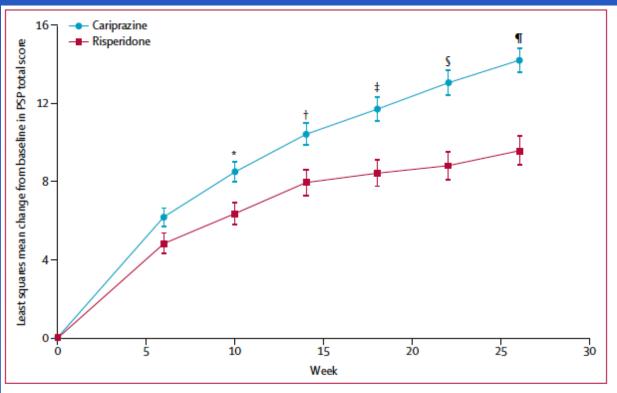
Subgroup analysis for effects on negative symptoms



Cariprazine for Negative Symptoms of Schizophrenia

Cariprazine (Vraylar™)

- D2 and D3 partial agonist
- 10-fold higher affinity at D3 compared to D2 receptors
- 5-HT1A partial agonist
- Phase 2 and Phase 3 studies showed efficacy of cariprazine in acute schizophrenia (Durgam et al., 2014 Schizophr Res; Durgam et al., 2015 J Clin Psychiatry)
- Post hoc analyses suggested efficacy in people with predominant negative sxs and low positive sxs (Debelle et al., 2014 Eur Neuropsychopharm [abstr]; Debelle et al., 2015 Eur Psychiatry [abstr])
- Led to design of 26 wk RCT comparing cariprazine vs risperidone in people with predominant negative sxs of schizophrenia
- 461 subjects randomized, 77% completed study in each arm


Cariprazine vs Risperidone: Change in Negative Symptoms

Effect size=0.31

Figure 2: Mean change from baseline to week 26 in PANSS-factor score for negative symptoms p=0.0092 for the overall treatment effect of cariprazine versus risperidone. PANSS-FSNS=Positive and Negative Syndrome Scale factor score for negative symptoms. *p=0.0079. †p=0.0011. ‡p=0.0016. §p=0.0022.

Cariprazine vs Risperidone: Change in Personal and Social Functioning

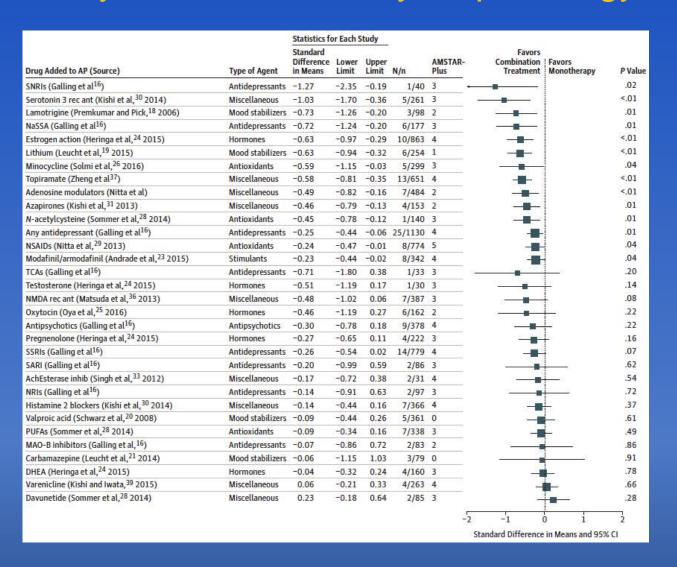
Effect size=0.48

Figure 3: Mean change from baseline to week 26 in PSP total score p<0.0001 for the overall treatment effect of cariprazine versus risperidone. PSP=Personal and Social Performance Scale. *p=0.0053. †p=0.0046. ‡p=0.0004. §p<0.0001. ¶p<0.0001.

Nemeth et al., Lancet, 2017; 389: 1103-1113

Adjunctive Treatment to Antipsychotic Monotherapy in Schizophrenia

- Persistent symptoms despite optimized APD treatment has led to search for pharmacological combination treatments
- Meta-analyses have provided efficacy data on specific combination strategies, yet there has been no direct quantitative comparison across all individual combination strategies versus APD monotherapy.
- Systematic overview and quality appraisal of metaanalytic evidence was performed by Correll et al. (JAMA Psychiatry 2017; 74:675-684)
- 29 meta-analyses testing 42 combination treatments in 381 RCTs and N=19,833 participants were identified


Adjunctive Treatment to Antipsychotic Monotherapy in Schizophrenia

- AMSTAR A Measurement Tool to Assess Systematic Reviews – (range 0-11) was used to rate the quality of the meta-analyses (Shea et al., J Clin Epidemiol 2009; 62: 1013-1020)
 - 89% of meta-analyses scored 8 or higher and 49% scored 11
- AMSTAR-Plus Content assesses content quality of the meta-analyzed data (range 0-8) (developed by Correll et al (2017))
 - Mean AMSTAR-Plus Content score = 2.8 (!)
 - Only 1 meta-analysis had score over 4

Adjunctive Treatment to Antipsychotic Monotherapy in Schizophrenia

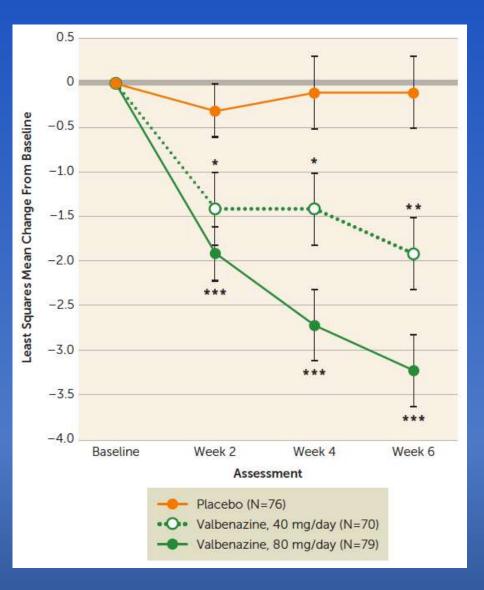
- Across 37 adjunctive treatments, 14 outperformed controls on total psychopathology, mostly with medium to large effect sizes
- The recommendation to clinicians by the authors of each metaanalysis favoring use of the adjunctive tx was correlated with the effect size produced by each meta-analysis
- However, when the quality of the meta-analyzed content was considered, the effect sizes were *inversely* correlated with study quality, reducing the confidence in these recommendations.
- CONCLUSION: No pharmacological combination treatments had sufficient quality or consistent efficacy to support a recommendation over APD monotherapy

Meta-analysis-Based Effect Sizes of Augmentation of any APD on Total Psychopathology

Tardive Dyskinesia (TD)

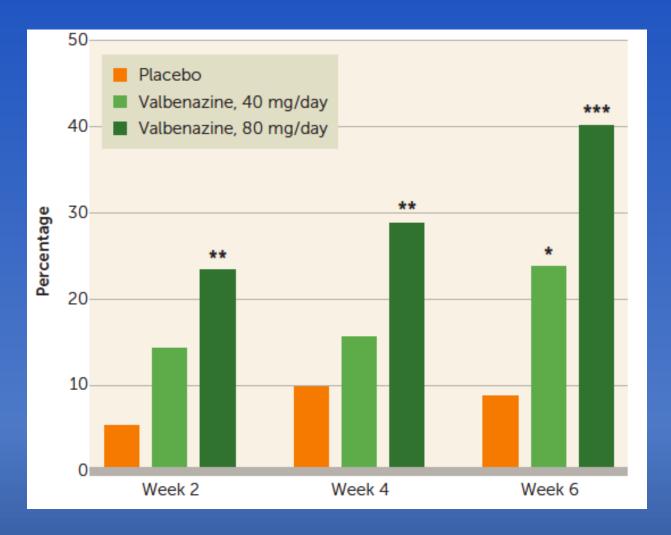
- Involuntary muscle movements associated with long term dopamine antagonist treatment
- Prevalence (Correll and Schenk, Curr Opin Psychiatry, 2008)

• FGAs: 32.4%


• SGAs: 13.1%

- General treatment approaches
 - Antipsychotic dose reduction
 - Switching from FGA to SGA or from SGA with higher D2 potency to lower D2 potency
- If TD symptoms are severe, consider clozapine
- Adjunctive treatments:
 - Presynaptic DA depletion via VMAT-2 inhibition: tetrabenazine (Xenazine)
 - Pyridoxine (Vit B6) 400 -1,200 mg/day (Lerner et al., 2001; Lerner et al., 2007)
 - Cholinesterase inhibitors (enhances post-synaptic cholinergic activity)
 - Benzodiazepines

Valbenazine: First FDA-approved treatment for Tardive Dyskinesia


- VMAT-2 inhibitor, structurally similar to tetrabenazine, shares 1 active metabolite with tetrabenazine
- $T_{1/2} = 20 \text{ hrs}$
- Phase 3 trial, N=225 patients with TD
- 6 week, double-blind, RCT
- 3 arms: VBZ 40 mg vs VBZ 80 mg vs placebo
- Primary outcome:
 - Change in Abnormal Involuntary Movement Scale (AIMS) score from Baseline to Week 6 in 80 mg dose group

Change in AIMS score over 6 wks in people with moderate to severe TD

Hauser et al., Am J Psychiatry 2017; 174: 476-484

Percentage of subjects who experienced >50% improvement in AIMS score

NNT=4 for VBZ 80 mg

Hauser et al., Am J Psychiatry 2017; 174: 476-484

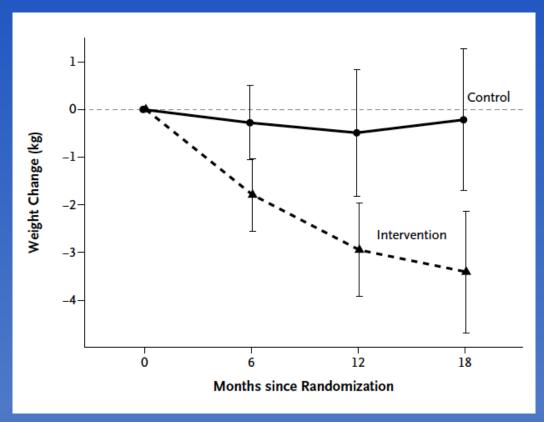
Valbenazine Tolerability

- Overall well tolerated, NNH=13
- Most commonly reported side effects:
 - Somnolence
 - Akathisia
 - Dry mouth
- Importantly, no increased risk of depression for VBZ given risk of depression associated with tetrabenazine.
- Can cause QT prolongation, use cautiously for:
 - congenital long QT syndrome
 - Arrhythmias associated with prolonged QT interval
- No adjustment needed for mild to mod renal impairment
- Avoid use with MAOIs

Life Expectancy for People with Schizophrenia

	Denmark		Finland		Sweden	
	Life		Life		Life	
Population	expectancy	Difference	expectancy	Difference	expectancy	Difference
Men						
General	75.7	_	75.7	_	78.2	_
population						
Patients with	55.7	20.0	58.6	17.1	59.3	18.9
schizophrenia						
Women						
General	80.3	_	82.5	_	82.6	_
population						
Patients with	63.8	16.5	66.9	15.6	65.7	16.9
schizophrenia						

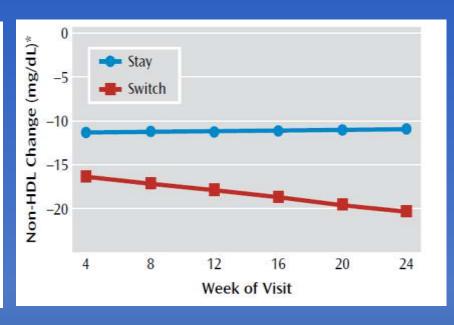
Prevalence and Relative Risk of Modifiable Risk Factors for CVD in SCZ


 Cardiovascular disease associated with 50% of excess mortality in people with schizophrenia (Osby et al. 2000)

Modifiable risk factors	Schizophrenia		
	Prevalence (%)	RR	
Obesity	45-55	1.5-2	
Smoking	50-80	2-3	
Diabetes mellitus	10-15	2-3	
Hypertension	19-58	2-3	
Dyslipidemia	25-69	≤5	
Metabolic syndrome	37-63	2-3	

Overweight and Obesity in Schizophrenia: Treatment Approaches

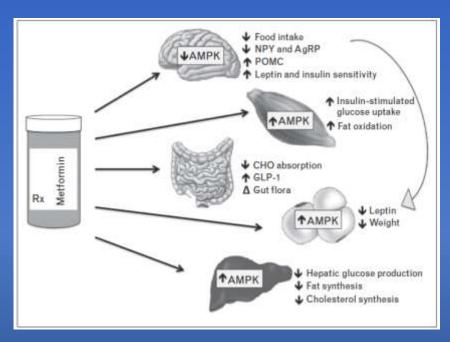

- Behavioral Interventions: diet and physical activity
 - Important for many aspects of healthy living, not just when trying to lose weight
 - May see limited participation in this population due to reduced motivation (negative sxs), lack of insight/knowledge, low SES, limited access
- Switch to APD with less potential for weight gain
 - Risk for psychiatric decompensation especially w/ clozapine
 - Potential for substituting side-effects
- Adjunctive therapy for weight loss
 - FDA and non-FDA approved treatments


Randomized Trial of Achieving Healthy Lifestyles in Psychiatric Rehabilitation (ACHIEVE STUDY)

Comparison of Antipsychotics for Metabolic Problems (CAMP) study

24 week study, 215 pts with schizophrenia taking OLZ, RIS or QUET, with BMI>27 and non-HDL cholesterol >130 mg/dL were randomized to STAY on current APD or SWITCH to aripiprazole.

Discontinuation of assigned drug: Switch N=47 (43.9%), Stay N=26 (24.5%)

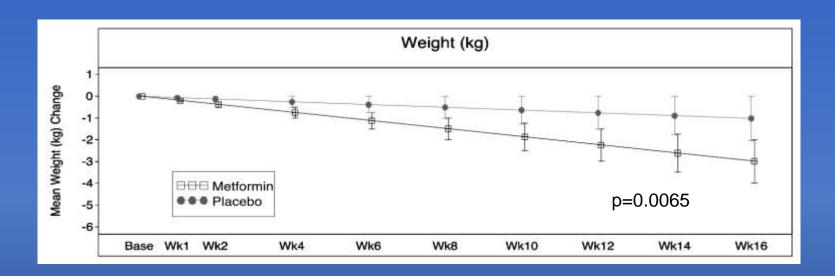

Stroup et al., Am J Psychiatry 2011; 168: 947-956

Augmentation Strategies for Antipsychotic-Associated Weight Gain

Metformin

- Best-supported among studied agents with weight loss (~3 kg) across many RCTs and multiple recent meta-analyses (Mizuno et al., Schizophr Bull 2014; 40: 1385-1403; Fiedorowicz et al., Curr Psychiatry Rev 2012; 8: 25-36; Maayan et al., Neuropsychopharmacol 2010; 35:1520-1530)
- Off-label use for weight loss

Metformin-mediated weight loss mechanisms



Metformin

- Side-effects (common self limiting)
 - Nausea, vomiting, abdominal discomfort
 - Diarrhea
- Side-effects (rare, serious)
 - Hypoglycemia
 - Lactic acidosis (3 in 100,000 patient-years)
- Contraindications
 - Renal disease (eGFR < 45mL/min/1.73 m²)
 - Metabolic acidosis
- Precautions
 - Congestive heart failure
 - Alcohol Abuse
 - Hepatic disease
 - Dehydration

Metformin in the Treatment of Antipsychoticinduced Weight Gain in Schizophrenia (METS)

- 16 week RCT with 146 outpatients with SCZ or SczAff d/o with BMI>27 kg/m² on stable doses of 1 or 2 APDs
- Randomized to metformin or placebo
- Metformin titrated from 500 mg BID up to 1,000 mg BID, as tolerated

Other adjunctive agents with meta-analytic evidence for APD-associated weight gain

- Topiramate (Correll et al., J Clin Psychiatry 2016; 77: e746-e756)
 - Off-label use for weight loss, approved for epilepsy and migraines
 - 7 RCTs (N=327), dose range: 100-400 mg/day, duration: 8-24 wks
 - Mean weight change: 3.14 kg
 - Side effects often limit use
 - Fatigue
 - Cognitive slowing, memory impairment
 - Paresthesia
- Aripiprazole (Mizuno et al., Schizophr Bull 2014; 40: 1385-1403)
 - 3 RCTs (N=260), largest in patients taking clozapine (N=207)
 - Dose range: 5 15 mg/day, duration: 8 16 wks
 - Mean weight change: 2.13 kg
 - Side effects associated with aripiprazole
 - Nausea, vomiting, anxiety, insomnia, EPS/akathisia

Liraglutide: GLP-1 agonist for weight loss and metabolic control in clozapine- or olanzapine-treated patients with SCZ

- Liraglutide approved for: 1) Type 2 diabetes 2) Obesity
- Glucagon-like peptide-1
 - incretin hormone secreted from L cells in gut in response to food
 - stimulates insulin secretion, inhibits glucagon secretion lowers glucose levels
- 16 week study in 103 subjects who received liraglutide 1.8 mg/day or placebo sc

Change from Baseline to Week 16

	Liraglutide	Placebo	Est Treatment Difference (95% CI)	P value
Weight (kg)	-4.7	0.5	-5.3 (-7.0 to -3.7)	<0.001
HbA1c (%)	-0.2	0.06	-0.2 (-0.3 to -0.1)	<0.001
Cholesterol, total (mg/dL)	-19.3	3.5	-19.3 (-30.9 to -7.7)	<0.001
LDL (mg/dL)	-15.4	-2.3	-15.4 (-23.2 to -7.7)	<0.001

Key points

- Omega-3 PUFAs may not prevent conversion to psychosis in atrisk individuals
- Clozapine is underutilized and remains superior in many (but not all) studies and analyses
- Antidepressants have a role for treating depression and negative symptoms in SCZ
- No combination treatments to enhance antipsychotic efficacy beyond antipsychotic monotherapy can be clearly recommended at this time
- Valbenazine approved for TD
- Metformin represents most established adjunctive treatment for weight loss in overweight patients with SCZ

Thank you!