Managing Psychotropic Drug Side Effects

Joseph F. Goldberg, M.D.
Clinical Professor of Psychiatry
Icahn School of Medicine at Mount Sinai
New York, NY

Disclosure of Conflicts

- Advisor: Avanir, Mylan Pharmaceuticals
- Consultant: Frontline Medical Communications, Medscape
- Speakers’ Bureau: AstraZeneca, Mylan Pharmaceuticals, Novartis, Takeda, Sunovion
- Research Grants: None
- Employee: None
- Major Stockholder: None
Objectives

• To gain familiarity with risks and benefits of psychotropic drug therapy and strategies for managing adverse side effects.
• To understand factors that impact the emergence of adverse psychotropic drug effects

Off Label Uses

• Virtually every intervention available is capitalizing on the pharmacodynamic profile of a compound that has not been approved by the FDA for the purpose of counteracting another drug’s side effect
Basic Concepts

• Risk-benefit analyses
 – Alternative efficacious treatments
 – Unique efficacy (eg, lithium, clozapine); effect size, NNH
 – Antidotes versus changing treatment, dangerous vs. annoying
• Time course to adverse effects vs. efficacy (rashes; NMS; TD)
• Attribution and causality
 – Primary illness vs. iatrogenic signs
 – Plausible mechanisms (eg, dry mouth + diarrhea)
 – Paradoxical vs. lack of efficacy (eg, psychosis from antipsychotics)
 – Side effect rates vary across illnesses (eg SSRIs: MDD vs. GAD)
 – Nocebo effects
• Generic vs. branded/extended release vs. immediate release
• At-risk populations (eg, antidepressant-induced mania; Han Chinese CBZ)
• Parsing effects within drug combinations
• Pharmacokinetic effects (eg, slow metabolizers), opposing mechanisms
• Pharmacologic parsimony/minimization of toxic polypharmacy
• Manufacturers’ PIs/spontaneous reporting
• Nocebo effects¹

¹ Barsky et al., JAMA 2002; 287: 622-627

Risk-Benefit Analyses

“This prescription doesn’t cure anything, but it has fewer side effects than other drugs.”
Time Course for Side Effects and the Natural Course of Illness

Nocebo Effects:
Most common (>10% in depression RCTs): dizziness, headache, nausea, diarrhea, sedation, insomnia, anorexia, nervousness, anxiety

Predisposing factors: neuroticism, phobic-obsessive traits, suggestibility, alexithymia
End-Organ Effects

<table>
<thead>
<tr>
<th>Cardiac</th>
<th>Alopecia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal</td>
<td>Angioedema</td>
</tr>
<tr>
<td>Systemic</td>
<td>Blood dyscrasias</td>
</tr>
<tr>
<td>Sexual</td>
<td>Bone demineralization</td>
</tr>
<tr>
<td>Weight</td>
<td>Bruxism</td>
</tr>
<tr>
<td>Sedation</td>
<td>Discontinuation Syndromes</td>
</tr>
<tr>
<td>Sleep</td>
<td>Dry mouth</td>
</tr>
<tr>
<td>Cognition</td>
<td>Edema</td>
</tr>
<tr>
<td>Motor</td>
<td>Electrolyte abnormalities</td>
</tr>
</tbody>
</table>

Cardiac

- Ray et al., NEJM 2009; 360: 225-235

Atypical Antipsychotic Drugs and the Risk of Sudden Cardiac Death

Results

Current users of typical and of atypical antipsychotic drugs had higher rates of sudden cardiac death than did nonusers of antipsychotic drugs, with adjusted incidence-rate ratios of 1.99 (95% confidence interval [CI], 1.68 to 2.34) and 2.26 (95% CI, 1.88 to 2.72), respectively. The incidence-rate ratio for users of atypical antipsychotic drugs as compared with users of typical antipsychotic drugs was 1.14 (95% CI, 0.93 to 1.39). For both classes of drugs, the risk for current users increased significantly with an increasing dose. Among users of typical antipsychotic drugs, the incidence-rate ratios increased from 1.31 (95% CI, 0.97 to 1.77) for those taking low doses to 2.42 (95% CI, 1.91 to 3.06) for those taking high doses (P<0.001). Among users of atypical agents, the incidence-rate ratios increased from 1.59 (95% CI, 1.03 to 2.46) for those taking low doses to 2.86 (95% CI, 2.23 to 3.65) for those taking high doses (P<0.01). The findings were similar in the cohort that was matched for propensity score.

Ray et al., NEJM 2009; 360: 225-235
QTc Prolongation Among Antipsychotics

- If QTc > 500: avoid antipsychotics
- If QTc is prolonged (i.e., 450-499 msec): benefit may outweigh risk of using an antipsychotic with lower potential for QTc prolongation
 - Collaboration with cardiologist
 - Assure no other medications are present that could independently prolong QTc

Marder et al., Schizophr Res 2003; 61: 123-135
Glassman & Biggers, Am J Psychiatry 2001; 158: 1774-1783

Risk Factors for QTc Prolongation

- Alcohol
- Antiarrhythmics (amiodarone, flecainide, quinidine)
- Antibiotics (azithromycin, ciprofloxacin, erythromycin, levofloxacin)
- Ondansetron
- Ketoconazole
- Citalopram >40 mg/day
- cyclobenzaprine
- Methadone
- TCAs
- Trazodone
- vardenafil
Cardiac Adverse Effects

<table>
<thead>
<tr>
<th>Agent</th>
<th>EKG Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine</td>
<td>Heart block, ventricular arrhythmias in OD</td>
</tr>
<tr>
<td>Divalproex</td>
<td>↑ or ↓ heart rate</td>
</tr>
<tr>
<td>Lithium</td>
<td>Reversible T-wave changes, sinus bradycardia, heart block</td>
</tr>
<tr>
<td>Second Generation Antipsychotics</td>
<td>QTc↑ (ziprasidone: 20.3 msec, quetiapine 14.5 msec, risperidone 11.6 msec, olanzapine 6.8 msec, haloperidol 4.7 msec)</td>
</tr>
<tr>
<td>Clozapine</td>
<td>myocarditis</td>
</tr>
<tr>
<td>SSRIs</td>
<td>QTc ↑ (rare) w/fluoxetine, paroxetine, sertraline</td>
</tr>
<tr>
<td>SNRIs</td>
<td>↑ HR, minor QT or QES prolongation on OD</td>
</tr>
<tr>
<td>Tricyclics</td>
<td>↑PR and QRS interval, ST-T changes</td>
</tr>
</tbody>
</table>

Renal Function

GFR: (normal):
- Normally declines by ~10 ml/min/year beyond age 40
- Chronic Kidney Disease stages:
 - St 1: GFR >90 mL/min/1.73 m²
 - St 2: GFR 60-89 mL/min/1.73 m²
 - St 3: GFR 30-59 mL/min/1.73 m²
 - St 4: GFR 15-29 mL/min/1.73 m²
 - GFR <15 mL/min/1.73 m²

LITHIUM
- APA Guidelines: semi-annual monitoring of lithium levels and serum creatinine
- Long-term risk for CKD: 4% – 20%
- Once-daily dosing minimizes glomerular sclerosis
- Rises > 25% warrant measurement of 24-hour urine for creatinine clearance

DIABETES INSIPIDUS
- Amlodipine 5 mg BID to ↑ concentrating ability (K⁺ sparing)

1 Gitlin, 1993; 2 Lepkifker 2004; 3 Finch et al., 2003; 4 Bedford et al., 2008
Discontinuation Syndromes

Serotonergic Antidepressants:
As many as 46% of patients taking short t½ SSRI1,2
Hypothesized mechanisms:
• cholinergic rebound (after prolonged blockade)
(e.g., paroxetine, 3⁰ amine TCAs)
• Increased catecholaminergic activity
• Rostral anterior cingulate choline/creatine
 metabolite ratio ↓

MAOI discontinuation: hallucinations, anxiety, agitation, paranoia, delirium
Gradual taper

Antipsychotic withdrawal dyskinesias

Prazosin (and other α1 blockers): rebound hypertension

1 Tint et al., J Psychopharmacol 2008; 22: 330-332
2 Perahia et al., J Affect Disord 2005; 89(1-3): 207-212
3 Kaufman et al., Biol Psychiatry 2003; 54: 534-539

Common Symptoms of SSRI Discontinuation

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Fluoxetine</th>
<th>Sertraline</th>
<th>Paroxetine</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=242 remitted MDD patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abrupt 5-8 day interruption of SSRI continuation treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptoms as reported by ≥10% of patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restlessness</td>
<td>46</td>
<td>31</td>
<td>45</td>
</tr>
<tr>
<td>Irritability</td>
<td>35</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>Agitation</td>
<td>31</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>Dizziness</td>
<td>50</td>
<td>50</td>
<td>49</td>
</tr>
<tr>
<td>Confusion</td>
<td>42</td>
<td>42</td>
<td>36</td>
</tr>
<tr>
<td>Headache</td>
<td>34</td>
<td>34</td>
<td>22</td>
</tr>
<tr>
<td>Nervousness</td>
<td>34</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>Crying</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Emotional lability</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Trouble sleeping</td>
<td>39</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>Daydreaming</td>
<td>17</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Anger</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Nausea</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Anorexia</td>
<td>24</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>Sweating</td>
<td>24</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>Depersonalization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle aches</td>
<td>23</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Unsteady gait</td>
<td>23</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>Panic</td>
<td>21</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>Dry eyes</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>24</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>Shaking</td>
<td>21</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>Muscle tension</td>
<td>11</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>Chills</td>
<td>18</td>
<td>18</td>
<td>11</td>
</tr>
</tbody>
</table>

Rosenbaum et al., Biol Psychiatry 1998; 44: 77-87
Hypersensitivity Reactions

- **Anticonvulsants**: Drug Reaction with Eosinophilia and Systemic Symptoms
- Aseptic meningitis (lamotrigine) – 40 cases, mean onset @ 16 days
- Drug-induced Lupus Erythematosus: carbamazepine, oxcarbazepine, lithium, clonidine, first generation antipsychotics
 - Flu-like symptoms, fever, myalgias/arthralgias
 - (rash is rarer than in SLE)

Serotonin Syndrome

- Hunter criteria: clonus, agitation, diaphoresis, tremor, diarrhea, hyperreflexia
- MAOIs + serotonergic antidepressants, meperidine, dextromethorphan
- SSRIs + buspirone, triptans
- Amphetamines (which release serotonin)
- 3,4-methylenedioxymethamphetamine (Ecstasy)
- Tramodol + SSRIs or SNRIs
SSRI-Associated Sexual Dysfunction

30-70% incidence

<table>
<thead>
<tr>
<th>Agent</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amantadine</td>
<td>DA agonism</td>
</tr>
<tr>
<td>Bupropion</td>
<td>DA agonism</td>
</tr>
<tr>
<td>Buspirone</td>
<td>5-HT$_{1A}$ partial agonism</td>
</tr>
<tr>
<td>Cyproheptadine</td>
<td>5-HT blocker</td>
</tr>
<tr>
<td>Gingko Biloba</td>
<td>?</td>
</tr>
<tr>
<td>Maca Root</td>
<td>?</td>
</tr>
<tr>
<td>Methylphenidate</td>
<td>DA agonism</td>
</tr>
<tr>
<td>PDE-5 Inhibitors (Sildenafil, Tadalafil, Vardenafil)</td>
<td>NO</td>
</tr>
<tr>
<td>Yohimbine (+/- L-arginine glutamate)</td>
<td>α_2 blockade \uparrow’s NE tone</td>
</tr>
<tr>
<td>Trazodone</td>
<td>Postsynaptic 5HT$_{2A}$ blocker</td>
</tr>
<tr>
<td>Mirtazapine</td>
<td>Postsynaptic 5HT$_{2A}$ blocker</td>
</tr>
</tbody>
</table>

Amantadine vs. Buspirone vs. Placebo in Women with SSRI-Associated Sexual Dysfunction

- Fluoxetine treatment for MDD x at least 8 weeks + subsequent emergence of sexual dysfunction
- Randomization to amantadine (N=18), buspirone (N=19) or placebo (N=20)
- No significant between-group differences in interest/desire, lubrication, orgasm, pleasure, discomfort

Buspirone for SSRI-Induced Sexual Dysfunction

- 4-week randomized comparison of buspirone (mean dose 49 mg/day) or placebo added to paroxetine or citalopram
- 47 men and women, trend toward better outcomes in women

Landén et al., J Clin Psychopharmacol 1998; 19: 268-271

Sildenafil for SSRI-Associated Sexual Dysfunction

- 6-week randomized placebo-controlled trial of sildenafil 50-100 mg/day in 90 remitted male depressed outpatients with SSRI-associated sexual dysfunction
- % "very much improved" or "much improved"

Nurnberger et al., JAMA 2003; 289: 56-64
Sildenafil for SSRI-Associated Sexual Dysfunction

6-week randomized comparison of sildenafil (N=71) or placebo (N=71)
In remitted depressed men with SSRI-associated erectile dysfunction

• Significantly improved frequency of penetration, maintained erections
 after penetration, more successful intercourse attempts per week

Fava et al., *J Clin Psychiatry* 2006; 67: 240-246

Sildenafil for SSRI-Associated Sexual Dysfunction in Women

• 8-week placebo-controlled randomized study of sildenafil 50-100 mg/day
• 98 premenopausal women with SSRI-remitted depression but 2o sexual dysfunction

LABEL

1

1.5

2

Greater ability to achieve orgasm (p=.01)
Greater improvement in quality of orgasm (p=.03)

Note: in women, PDEIs improve anorgasmia but not desire, arousal-sensation, or arousal-lubrication

Adverse effects: headache, flushing, dyspepsia, nasal congestion, blurry vision

Numberg et al., *JAMA* 2008; 300: 395-404
Yohimbine

- 3-way crossover: Yohimbine 6 mg vs. Yohimbine 6 mg + L arginine glutamate 6 gms or placebo
- 45 men with erectile dysfunction (non-iatrogenic)

Lebret et al., *Eur Urol* 2002; 41: 608-613

Adjunctive Bupropion for SSRI-Associated Sexual Dysfunction

- Open trial of bupropion SR 75-150 mg 1-2x before sex or TID if no response
 - N=47
 - 66% overall improved (38% of those on PRN regimen)

- 234 euthymic SSRI-treated men
 - Bupropion SR 150 mg BID vs. placebo x 12 weeks
 - Better global sexual functioning (ASEX, IIEF, CGI-SF)
 - Safarinejad, *BJU Int* 2010; 106: 840-847

- 6-week randomized comparison (N=41) of Bupropion SR 150 mg/day or placebo X 6 weeks
 - No significant between-group differences on ASEX

- 6-week randomized comparison (N=30) of bupropion SR 150 mg or placebo q 6 PM x 3 weeks
 - No significant between-group differences on ASEX
 - Masand et al., *Am J Psychiatr* 2001; 158: 06-807
Mixed or Preliminary Results

<table>
<thead>
<tr>
<th>Agent</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyproheptadine</td>
<td>Case reports</td>
</tr>
<tr>
<td>Methylphenidate</td>
<td>Case reports, but negative double-blind data ¹</td>
</tr>
<tr>
<td>Trazodone</td>
<td>Open trial (N=20), 50-100 mg/day improved desire, arousal, orgasm in ♂ and ♀ ²</td>
</tr>
<tr>
<td>Mirtazapine</td>
<td>8-week open trial (N=33), 15-30 mg/day; 49% reported significant improvement ³</td>
</tr>
<tr>
<td>Gingko Biloba</td>
<td>Case reports, but negative double-blind data ⁴,⁵</td>
</tr>
</tbody>
</table>

¹ Pae et al., 2009 ² Stryjer et al., Clin Neuropsychopharmacol 2009; 32: 82-84; ³ Ozmenler et al., Hum Psychopharmacol 2008; 23: 321-326; ⁴ Kang et al., Hum Psychopharmacol 2002; 17: 279-284; ⁵ Wheatley et al., Hum Psychopharmacol 2004; 19: 545-548

Psychotropic-Induced Weight Gain

STRATEGIES:
- Diet and exercise
- Metformin
- Topiramate
- Zonisamide
- Lamotrigine
- H₂ blockers
- Bupropion (+/- NTX)
- Orlistat
- Amantadine
- Stimulants
- Chromium picolinate

- Severity of illness
- Unique efficacy?
- Alternate tx’s?
- Viable to manage?
- Weight gain ² to psychiatric illness, concomitant meds or medical/psychiatric comorbidity?
- Extent of weight gain
- Other metabolic risks
Lifestyle Modification for Psychotropic Weight Gain

<table>
<thead>
<tr>
<th>Authors</th>
<th>Duration</th>
<th>N</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centorrino 1</td>
<td>24 weeks</td>
<td>22</td>
<td>13.2# wt loss (5.7% of baseline); 77% completed</td>
</tr>
<tr>
<td>Chen 2</td>
<td>10 weeks</td>
<td>33</td>
<td>↓4.6# @ 10 weeks; 8.1# @ 6 mos; 5.9# @ 12 mos; ↓TGs</td>
</tr>
<tr>
<td>Paulin 3</td>
<td>18 mos</td>
<td>110</td>
<td>3.5% ↓BW, ↓LDL, ↓TGs, ↓FBS, ↑HDL</td>
</tr>
<tr>
<td>Vreeland 4</td>
<td>12 week</td>
<td>31</td>
<td>6# wt ↓; 87% completed; 65% completedede 40-week extension, w/ ↓HbA1c</td>
</tr>
<tr>
<td>Menza 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwon 6</td>
<td>12 week</td>
<td>48</td>
<td>8.8# lost @ 8 weeks; no lipid Δ’s; 75% completed</td>
</tr>
</tbody>
</table>

Metformin + Lifestyle Modification

- 12 week comparison of metformin 750 mg/day or placebo, +/- lifestyle modification
- 128 schizophrenia patients who gained >10% of baseline body weight w/SGAs

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Δ BMI</th>
<th>Insulin Resistance Index</th>
<th>Δ in waist circumference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifestyle + metformin*</td>
<td>1.8</td>
<td>3.6</td>
<td>↓ 2.0 cm</td>
</tr>
<tr>
<td>Metformin</td>
<td>1.2</td>
<td>3.5</td>
<td>↓ 1.3 cm</td>
</tr>
<tr>
<td>Lifestyle + placebo</td>
<td>0.5</td>
<td>1.0</td>
<td>↑ 1.2 cm</td>
</tr>
</tbody>
</table>

* BMI: L + M > M or L; M > L or PBO; L > PBO
* IRI: L + M > L or PBO; M > L or PBO; L > PBO
* Waist: L + M > M or L or PBO; M > L or PBO; L >PBO

Wu et al., *JAMA* 2008; 299: 185-193
Metabolic Dysregulation: Hyperglycemia and Metformin

• 40 drug-naïve, 1st episode SZ patients
• 12 weeks of OLZ 15 mg/day + metformin 750 mg/day or placebo

Fasting Glucose
Fasting Insulin
Insulin Resistance Index

Wu et al., Am J Psychiatry 2008; 165: 352-358

Metformin for Atypical-Antipsychotic-Induced Weight Gain in Adolescents

16-week double-blind placebo-controlled trial of metformin in 39 adolescents who gained >10% of baseline weight with olanzapine, risperidone or quetiapine

Dosing: 500 mg @ HS x 1 week, then 500 mg BID, then 850 mg BID

Klein et al., Am J Psychiatry 2006; 163: 2072-2079
Metformin: Negative RCT

- 40 SZ patients beginning olanzapine
- 14-week comparison of adjunctive metformin (850-1700 mg/day) or placebo
- Mean serum glucose levels decreased significantly
- No significant differences in waist circumference, body weight gain, BMI, fasting glucose, insulin, lipids

Baptista et al., *Can J Psychiatry* 2006; 51: 192-196

Topiramate vs. Sibutramine for Psychotropic-Induced Weight Gain in Bipolar Disorder

24-week open randomized trial

<table>
<thead>
<tr>
<th></th>
<th>Sibutramine 5-15 mg/day</th>
<th>Topiramate 25-600 mg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=18</td>
<td></td>
<td>N=28</td>
</tr>
<tr>
<td>Mean weight loss</td>
<td>4.1 kg</td>
<td>2.8 kg</td>
</tr>
<tr>
<td>Δ BMI</td>
<td>-1.4</td>
<td>-1.1</td>
</tr>
<tr>
<td>% body weight lost</td>
<td>-4%</td>
<td>-3%</td>
</tr>
<tr>
<td>Completers</td>
<td>22%</td>
<td>21%</td>
</tr>
</tbody>
</table>

McElroy et al., *Bipolar Disord* 2007; 9: 426-434
Zonisamide vs. Placebo for Weight Loss in Obese Adults

- 60 randomized adults
- 16-week randomized trial
- Dosing: 100-600 mg/day
- Zonisamide: 57% lost 5% of baseline body weight (cf. 10% lost 5% w/ placebo)
- Extension to 32 weeks: Zonisamide group lost 9.2 kg (9.4% loss) vs. 1.5 kg (1.8% loss w/ placebo)

Data from the last observation carried forward, intent-to-treat analysis. Error bars indicate SE.

Gadde et al., JAMA 2003; 289: 1820-1825

Naltrexone (16 or 32 mg/day) + Bupropion SR (360 mg/day) for Overweight and Obesity

- N=1742
- 34 USA sites
- 56 weeks
- Healthy obese pts

Weight Loss:
- PBO: -1.3%
- NTX 16: -5.0%
- NTX 32: -6.1%

Greenway et al., Lancet 2010; 376: 595-605
Lamotrigine or Placebo for Weight Loss in Obese Adults

26 week randomized comparison of lamotrigine (200 mg/day) or placebo in 40 obese psychiatrically healthy adults

<table>
<thead>
<tr>
<th>Mean Δ in BMI from Baseline</th>
<th>Weight Loss (pounds) (LOCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamotrigine</td>
<td>Placebo</td>
</tr>
<tr>
<td>-1.5</td>
<td>-0.1</td>
</tr>
<tr>
<td>p = .042</td>
<td>p = .06</td>
</tr>
</tbody>
</table>

Meredith, *J Clin Psychiatry* 2006; 67: 258-262

Nizatidine for Olanzapine-Associated Weight Gain

KOREAN SAMPLE

- 8-week open-label trial in 10 SZ patients
- 3.5% down in weight, 3.7% down in BMI

Lilly sample

- 16-week RCT
- OLZ + nizatidine 150 or 300 mg BID
- NO SIGNIFICANT DIFFERENCES

Fig. 1. Weight gain reduced at weeks 3 and 4 in patients treated with OLZ + Niz 300 mg b.i.d.

Nizatidine and Olanzapine-Associated Weight Gain

8-week randomized placebo comparison in 35 SZ patients who gained >2.5 kg

Changes in Weight (kg)

Changes in serum Leptin Levels (mg/dL)

Atmaca et al., *Hum Psychopharmacol* 2003; 18: 457-461

Amantadine for Olanzapine-Associated Weight Gain in SZ

- 16-week randomized comparison of 300 mg/day of amantadine (N=60) or placebo (N=65) in psychosis patients who gained >5% of baseline body weight with olanzapine
- Greater weight loss with amantadine (-0.19 ± 4.58 kg) than placebo (+1.28 ± 4.26 kg)

Amantadine for Olanzapine-Associated Weight Gain in SZ

- 12-week randomized comparison of amantadine (300 mg/day) or placebo
- 21 adults with SZ who had gained >5 lbs with olanzapine
- Amantadine recipients lost a mean of 0.8 lbs (cf. placebo: gain of 8.7 lbs)

Orlistat for Clozapine- or Olanzapine-Associated Weight Gain

- 16-week randomized placebo comparison
- Baseline BMI: 28-43 kg/m²
- Dosing: 120 mg TID
- Response (>5% loss of baseline weight): 16% orlistat vs. 6% PBO (ns)

Stimulants and Weight Loss

- Adipex (phentermine) – short-term (12 weeks)
- Qsymia (topiramate and phentermine)
- Amphetamine
- Methylphenidate
- No clear pro-anorectic effect with modafinil or armodafinil

Sedation

Double-Blind, Placebo-Controlled Study of Modafinil for Fatigue and Cognition in Schizophrenia Patients Treated With Psychotropic Medications

- Adjunctive modafinil 200 mg/day added to olanzapine, risperidone, quetiapine or ziprasidone ± typical antipsychotics ± mood stabilizers ± antidepressants ± anticholinergics ± benzodiazepines ± zolpidem

No significant differences

Fatigue Severity Scale

Common side effects: agitation, insomnia, dry mouth
Insomnia

Diagnostic Considerations:
- Simple insomnia vs. mania/hypomania
- Akathisia
- Restless Legs Syndrome/periodic limb movement disorder
- Sleep Apnea
- Circadian rhythm disturbances
- Substance use withdrawal

Evaluation:
- Sleep log
- Sleep hygiene

Sleep and Mood

- Depression ↑’s sleep latency, ↑’s waking after sleep onset, ↑’s REM latency and density, ↑’s early morning awakenings, ↓’s stages 3 and 4 (slow wave) sleep, shifts REM sleep to earlier in the night

- Co-therapy with fluoxetine + clonazepam (0.5-1 mg/HS) for MDD x 1st 21 days = better sleep + less anxiety + faster global improvement ¹

- Antidepressants generally suppress REM except bupropion and mirtazapine

¹ Lønberg et al., J Affect Disord 2000; 61(1-2): 73-79
Insomnia

<table>
<thead>
<tr>
<th>Agent</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzodiazepines</td>
<td>More time in light sleep (St 2), reduction in slow wave sleep and REM; tolerance, withdrawal, abuse</td>
</tr>
<tr>
<td>Chloral Hydrate</td>
<td>↓'s sleep latency; t½ 4-6h; tolerance</td>
</tr>
<tr>
<td>Eszopiclone (Lunesta®)</td>
<td>GABA-A subunit selectivity; does not alter slow wave sleep or REM</td>
</tr>
<tr>
<td>Gabapentin</td>
<td>↑'s slow wave sleep</td>
</tr>
<tr>
<td>Mirtazapine</td>
<td>↑ time in St 2, REM and slow wave sleep</td>
</tr>
<tr>
<td>Melatonin</td>
<td>0.1-0.3 mg = physiologically relevant; minimal disruption of sleep architecture</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>↓ REM time, ↑ total time in non-REM sleep & ↑ 'd duration of St 2 sleep</td>
</tr>
<tr>
<td>Ramelteon</td>
<td>↑'s REM and slow wave sleep</td>
</tr>
<tr>
<td>Doxepin (Silenor®)</td>
<td>H₁ antagonist; 25-50 mg @ HS</td>
</tr>
<tr>
<td>Trazodone</td>
<td>↓’s St 1 & 2 sleep; little effect on REM</td>
</tr>
<tr>
<td>Zaleplon</td>
<td>t½=1h; better for sleep initiation than maintenance</td>
</tr>
<tr>
<td>Zolpidem</td>
<td>Preserves slow wave sleep</td>
</tr>
</tbody>
</table>

Benzo’s or Non-Benzo’s?

BENZO’S
- More disruption of sleep architecture
- Rebound insomnia and withdrawal
- Abuse potential
- Tolerance
- Respiratory suppression
- Daytime cognitive impairment

NON-BENZO’S
- Less disruption of sleep architecture
- Rarer rebound insomnia and withdrawal
- Lower abuse potential
- Less rapid tolerance during long-term tx
- Less risk for respiratory suppression
- Less retrograde memory impairment

Adverse Cognitive Effects

- Illness with known cognitive AEs
 - Domains: attention, memory, executive function
- Parsing multiple sedating agents
- Anticholinergic, antihistaminergic, BZDs
- Drug toxicity states
 - Corroborative signs of neurotoxicity
- EtOH, depression, anxiety
- Amantadine vs. benztropine

Cognitive Enhancers?

<table>
<thead>
<tr>
<th>Agent</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donepezil</td>
<td>67% “global improvement” as open-label add-on</td>
</tr>
<tr>
<td></td>
<td>No benefit vs. placebo in Sz or SzAff disorder</td>
</tr>
<tr>
<td>Rivastigmine</td>
<td>Same as placebo in studies in SZ</td>
</tr>
<tr>
<td>Galantamine</td>
<td>Favorable case reports in BP disorder</td>
</tr>
<tr>
<td></td>
<td>Improved processing speed in SZ (16 mg/day)</td>
</tr>
<tr>
<td>Modafinil</td>
<td>May improve attentional set-shifting, working memory, response inhibition, executive function, immediate verbal recall, short-term visual memory</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>May improve working memory, language production</td>
</tr>
<tr>
<td>Memantine</td>
<td>Favorable open-label self-report data</td>
</tr>
</tbody>
</table>
Other Possible Cognitive Enhancers?

<table>
<thead>
<tr>
<th>Cognition</th>
<th>COX-2 inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pramipexole</td>
<td></td>
</tr>
<tr>
<td>thyroxine</td>
<td>Buspirone</td>
</tr>
<tr>
<td>Glycine</td>
<td>Sibutramine</td>
</tr>
<tr>
<td>D-serine</td>
<td>Ginko biloba</td>
</tr>
<tr>
<td>D-cycloserine</td>
<td>Omega-3 fatty acids</td>
</tr>
<tr>
<td>Ampakines</td>
<td>Estrogen</td>
</tr>
<tr>
<td>Acamprosate</td>
<td>Vitamin E</td>
</tr>
<tr>
<td></td>
<td>Taurine</td>
</tr>
</tbody>
</table>

Motor Side Effects

- Rates of EPS
- Tremor: \(\beta \)-blockers, primidone
- Akathisia: \(\beta \)-blockers, benzodiazepines
Tardive Dyskinesia and Vitamin E

<table>
<thead>
<tr>
<th>Study</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-week randomized comparison of Vit E 1200 IU vs. placebo (N=41)</td>
<td>AIMS reduction: 46% Vit E vs. 4% PBO</td>
</tr>
<tr>
<td>2-month randomized comparison of Vit E 800 IU BID vs. placebo (N=35)</td>
<td>AIMS reduction: 24% Vit E</td>
</tr>
<tr>
<td>2-Year 9-site VA trial comparing Vit E 1600 IU/day vs. placebo (N=158)</td>
<td>No total or subscale differences on AIMS</td>
</tr>
<tr>
<td>6-week comparison of Vit E 1600 IU/day vs. placebo (N=18)</td>
<td>No differences on AIMS scores</td>
</tr>
</tbody>
</table>

Tardive Dyskinesia

<table>
<thead>
<tr>
<th>Agent</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin B6 (N=50); 1200 mg/day or placebo x 26 weeks</td>
<td>Greater ↓ in EPS, Parkinsonism, dyskinesia (p<.001)</td>
</tr>
<tr>
<td>Levetiracetam (N=50; 500-3000 mg/day (mean= 2156 mg/day)</td>
<td>AIMS decline 44% with LEV vs. 19% PBO (p=.022)</td>
</tr>
<tr>
<td>Amantadine (N=32, 100 mg BID) x 2 wks</td>
<td>Biperiden = amantadine >PBO for Parkinsonism and AIMS</td>
</tr>
<tr>
<td>Biperiden (N=32, 2 mg BID) x 2 wks</td>
<td>Biperiden = amantadine >PBO for Parkinsonism and AIMS</td>
</tr>
<tr>
<td>Melatonin (N=22, 10 mg x 6 weeks)</td>
<td>AIMS decline 2.5 points with MEL vs. 0.1 with PBO (p<.001)</td>
</tr>
</tbody>
</table>

Clozapine and Tardive Dyskinesia

- 20 chronic SZ patients given clozapine x 18 weeks
- 74% TD improvement, 69% Parkinsonism improvement, 78% akathisia improvement

1 Spivak et al., J Clin Psychiatry 1997; 58: 318-322

Conclusions

- Effective management of adverse drug effects requires careful overall assessment and evaluation of relative drug risks and benefits
- Variable and ever-changing evidence-base to support pharmacologic and other strategies to manage specific iatrogenic effects