New Approaches to Insomnia and Depression

Andrew Krystal, MD, MS
Director, Sleep Research Laboratory and Insomnia Program
Director of Neurosciences Medicine, Duke Clinical Research Institute
Professor of Psychiatry and Behavioral Sciences
Duke University School of Medicine
Durham, North Carolina
Disclosures

• My content will include reference to commercial products; however, generic and alternative products will be discussed whenever possible.

• Consulting: Abbott, AstraZeneca, Attentiv, Teva, Eisai,, Jazz, Janssen, Merck, Neurocrine, Novartis, Otsuka, Lundbeck, Roche, Somnus, Sunovion, Somaxon, Transcept, Vantia

• Grants/research support: NIH, Teva, Sunovion, Astellas, Abbott, Neosync, Brainsway, Janssen, ANS St. Jude, Novartis.
Overview

• The relationship of insomnia and depression
• General treatment strategy
• Available data on the treatment of insomnia in patients with insomnia and depression
• Trying to make sense of the findings
• Conclusions
90% with MDD Have Sleep Problem: DSM-IV Major Depression

• 2-week period of depressed mood or loss of interest
• Clinically significant distress or impairment of functioning
• Symptoms not due to substance abuse or medical condition
• 4 or more of the following symptoms:
 – Insomnia/hypersomnia
 – Weight loss/decreased appetite
 – Psychomotor agitation/retardation
 – Fatigue/loss of energy
 – Worthlessness and guilt
 – Diminished concentration/indecisiveness
 – Thoughts of death and suicide

Major Depressive Disorder

• Sleep alterations reported include:
 – Difficulty falling and staying asleep
 – Increased light, stage 1 sleep
 – Decreased SWS
 – Decreased (<65 min) REM latency
 – Prolonged first REM sleep
 – Increased total REM sleep

• REM and SWS changes not currently believed relevant to insomnia diagnosis or outcome

Gillin et al., Arch Gen Psychiatry 1979; Kupfer et al., Arch Gen Psychiatry 1985; Walter et al., Biol Psychiatry 1989;
Berger et al., Biol Psychiatry 1982; Tsuno et al., J Clin Psych. 2005
Changes in Sleep in MDD

• Decreased amount of sleep
 – Prolonged sleep latency
 – Increased wake time in middle of night
 – Early morning awakenings with inability to return to sleep
 – Reduced sleep efficiency
 – Decreased total sleep time

• Alterations in sleep stages – implications?
 – Decreased slow-wave sleep (stages 3 and 4)
 – Shortened REM latency (<65 minutes)
 – Increased total amount of REM and REM%
Sleep in MDD

MDD

Normal

Waking
REM
Stg 1
Stg 2
Stg 3
Stg 4

Time (Hours)
Insomnia in MDD: Symptom or Co-Morbid Conditions?

• Are sleep problems best thought of as symptoms or conditions that are co-morbid with psychiatric disorders?

• Long considered symptoms: 1983 NIH Consensus Conference:
 • Chronic insomnia is caused by medical and psychiatric disorders
 • Insomnia-specific treatment is not needed
 • Treating the “underlying disorder” should address the insomnia
Evidence for Bidirectionality, Insomnia Independence - Insomnia:

- Increases the risk of future depression
- Decreases antidepressant response
- Is independent risk factor for suicidality, attempts and completed suicide in MDD pts
 - Insomnia is a stronger predictor of near-lethal suicide attempts than a specific suicide plan
 - Relative risk of suicide death in studies up to 2.4
- Is the most frequent residual symptom in antidepressant responders
- Residual insomnia increases relapse risk

Bidirectional Effects

Sleep Disturbance Major Depression
Strategies for Treatment of Insomnia in Depressed Patients

• Monotherapy with sedating antidepressant
 – Mirtazapine: 15–45 mg qhs; tricyclic antidepressant
 • **Advantages:** Single medication — good compliance?
 • **Disadvantages:** Limited antidepressant options; risks residual daytime sedation, weight gain, etc.

• Nonsedating antidepressant plus:
 – Sedating antidepressant: trazodone: 50–200 mg qhs; mirtazapine 15–30 mg qhs; low-dose tricyclic antidepressant
 – Hypnotic agent
 • **Advantages:** greater flexibility in antidepressant selection; More predictable rapid sleep improvement; can d/c sedating agent and continue antidepressant
 • **Disadvantages:** Compliance? Cost
 – Cognitive behavioral therapy for insomnia (CBTI)

Cognitive Behavioral Insomnia Therapy

• Multiple components frequently administered in combination
 – Sleep Hygiene
 – Stimulus Control
 – Sleep Restriction
 – Cognitive Therapy
 – Relaxation Techniques
Sleep Hygiene Education

- Caffeine - sources & effects
- Nicotine
- Role of exercise
- Light bedtime snack (milk, peanut butter)
- Alcohol, tobacco & other substances
- Environment: light, noise, temperature
CBTI+Antidepressant Meds in MDD

- MDD patients receiving CBTI along with escitalopram had a greater depression remission rate than those administered a control behavioral intervention along with escitalopram (62% vs 33%)
- Two trials recently completed of anti-depressant meds plus CBTI
 - Improvement in insomnia mediates MDD improvement; Detailed results pending

Manber et al., Sleep. 2008
Available Data on Insomnia Pharmacotherapy

- Studies of sedating antidepressants don’t specifically assess sleep effects
 - Don’t indicate utility of treating sleep
- No studies of Sedating antidepressant + Non-sedating antidepressant
- Studies of treatment of residual insomnia with drug for sleep + antidepressant
 - Zolpidem, Trazodone
- “Hypnotic” + Non-sedating antidepressant
 - clonazepam, eszopiclone, zolpidem CR
Improvement in Residual Insomnia in SSRI-Treated Patients with MDD

Greater improvement in sleep compared with placebo found with adjunctive:

- Trazodone
- Zolpidem
 - Improved reported function and QOL

Trials of Antidepressant/Sleep Agent Co-Therapy

- Clonazepam
- Eszopiclone
- Zolpidem CR
Trial design: Clonazepam in patients with insomnia and MDD

Screening

Clonazepam 0.5–10 mg/d (n=40)

Placebo (n=40)

Open-label fluoxetine 20 mg/d

20–40 mg/d

Week

0

3

6

8

Double-blind treatment (21 days)

Taper (12 days)

Clonazepam:
Depression outcomes in patients with insomnia and MDD

p<0.01, *p<0.001 vs fluoxetine + placebo
Trial design:
Eszopiclone in patients with insomnia and MDD

- Screening
- Eszopiclone 3 mg/d (n=269)
- Placebo (n=274)
- Open-label fluoxetine 20–40 mg/d

Single-blind placebo

Double-blind treatment

Run-out

Week –2 0 4 8 10

Sleep Latency (LOCF)

*Placebo+Fluoxetine
Eszopiclone+Fluoxetine*

$p<0.0002$ vs placebo

p values reflect results from change from baseline analyses using ANCOVA.
WASO (LOCF)

Minutes (median)

- Placebo+Fluoxetine
- Eszopiclone+Fluoxetine

* $p<0.007$ vs placebo
† $p<0.05$ vs placebo

p values reflect results from change from baseline analyses using ANCOVA.
Total Sleep Time (LOCF)

- **Placebo+Fluoxetine**
- **Eszopiclone+Fluoxetine**

p values reflect results from change from baseline analyses using ANCOVA.

P<0.0001 vs placebo
Change from Baseline in HAM-D17

All Items

<table>
<thead>
<tr>
<th></th>
<th>Week 8</th>
<th>Week 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo+Fluoxetine</td>
<td>-10.9</td>
<td>-12.9</td>
</tr>
<tr>
<td>Eszopiclone+Fluoxetine</td>
<td>-12.2</td>
<td>-14.8</td>
</tr>
</tbody>
</table>

Excluding Insomnia Items

<table>
<thead>
<tr>
<th></th>
<th>Week 8</th>
<th>Week 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo+Fluoxetine</td>
<td>-9.2</td>
<td>-10.4</td>
</tr>
<tr>
<td>Eszopiclone+Fluoxetine</td>
<td>-9.5</td>
<td>-11.1</td>
</tr>
</tbody>
</table>

p values reflect results from change from baseline analyses using ANCOVA
Antidepressant Response and Remission (LOCF)

Response (50% HAM-D17 decrease)

- Week 4: Placebo+Fluoxetine 30, Eszopiclone+Fluoxetine 36, p=0.14
- Week 8: Placebo+Fluoxetine 48, Eszopiclone+Fluoxetine 59, p=0.009

Remission (HAM-D17 ≤ 7)

- Week 4: Placebo+Fluoxetine 19, Eszopiclone+Fluoxetine 22, p=0.29
- Week 8: Placebo+Fluoxetine 33, Eszopiclone+Fluoxetine 42, p=0.03
Improvement in MDD Not Seen with Zolpidem CR

- Identical study carried out with zolpidem CR and sleep was improved but no improvement in depression vs placebo

Sheehan et al., 2009
Study design:
Zolpidem CR in patients with insomnia and MDD

Zolpidem controlled-release 12.5 mg/d (n=190)

Placebo (n=190)

Responders ≥50% improvement in HAM-D17

Open-label escitalopram 10 mg/d

Screening

Week

-1 0 4 8 10 12 16 20 24 26

Double-blind treatment

Responder-randomized treatment

Run-out

Zolpidem CR:
Sleep outcomes in patients with insomnia and MDD

p<0.001, *p<0.0001 vs escitalopram + placebo

Zolpidem CR: Depression outcomes in patients with insomnia and MDD

All patients received escitalopram

<table>
<thead>
<tr>
<th>Week 4</th>
<th>Week 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC 10 mg/d + PBO (n=190)</td>
<td>ESC 10 mg/d + ZOL CR 12.5 mg (n=190)</td>
</tr>
<tr>
<td>Mean change from baseline</td>
<td>Improvement</td>
</tr>
<tr>
<td>HAM-D17 total score</td>
<td></td>
</tr>
<tr>
<td>-8.1</td>
<td>-10.9</td>
</tr>
<tr>
<td>-9.1</td>
<td>-11.3</td>
</tr>
<tr>
<td>-15</td>
<td>-15</td>
</tr>
</tbody>
</table>

Fava M, et al. Poster presented at the 22nd Annual APSS Meeting (SLEEP); June 2008
How Do We Explain Eszopiclone vs Zolpidem CR Difference?

• Sleep effect sizes are comparable but significant difference in associated effect on depression.

• Improvement in depression may not be mediated by improvement in sleep; and Either:
 – Eszopiclone is an antidepressant and Zolpidem CR is not
 – Zolpidem CR is an anti-antidepressant and Eszopiclone is not
BENEFIT SUSTAINED FOR AT LEAST 2 WEEKS POST DISCONTINUATION OF INSOMNIA THERAPY

Figure 2—HAM-D-17 Response and Remission Rates at Weeks 8 and 10. Note: p-values reflect Chi-square results.
Discontinuation Effects
WASO

Week 8 = last week of DB treatment
Discontinuation Effects
TST

Week 8 = last week of DB treatment
Mechanism of ESZ vs Zolpidem Difference?

• **Benzodiazepines** Temazepam, Flurazepam, Triazolam etc.
 – A group of compounds with related chemical structure
 – Mechanism of action:
 • GABA receptor comprised of 5 peptides that form channel which controls the flow of chloride ions in and out of the neuron.
 • Generally, Cl concentration greater outside than inside the neuron. GABA binding opens the channel and resulting inward flux of CL hyperpolarizes neuronal membrane causing inhibition
 • Benzodiazepines bind to a binding site on α subunit of GABA receptor complex and enhance this GABA-mediated inhibition

• “**Non-Benzodiazepines**” Zolpidem, zaleplon, eszopiclone, indiplon
 – A group of compounds unrelated to selves or benzos
 – Mechanism of action:
 • Same as benzos, relatively greater α subunit binding specificity
The GABA Receptor Complex
GABA-A Subunit-Specific Effects

- The effects of binding to α subunits differ because of location of GABA receptors containing them
 - Greater binding to α subunits of GABA receptors in the cerebellum will result in greater effect on balance.
 - Greater binding to α subunits of GABA receptors in the amygdala will result in greater effect on anxiety.
 - Evidence of differential binding in animals
 - Limited human data on differential α subunit binding
GABA Alpha Subunit Subtypes
Animal Data on Effects of GABA Alpha Subunit Binding

<table>
<thead>
<tr>
<th>Alpha subunit</th>
<th>Agents with Significant Effects</th>
<th>Possible Adjunctive Therapeutic Effects</th>
<th>Potential Adverse Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>Triazolam, Temazepam, Flurazepam, Estazolam, Quazepam, Zaleplon, Zolpidem, Zolpidem CR, Eszopiclone</td>
<td>Anti-Convulsant</td>
<td>Cognitive Impairment, Ataxia</td>
</tr>
<tr>
<td>α_2</td>
<td>Triazolam, Temazepam, Flurazepam, Estazolam, Quazepam, Eszopiclone</td>
<td>Anxiolytic, Myorelaxant, Antidepressant?</td>
<td></td>
</tr>
<tr>
<td>α_3</td>
<td>Triazolam, Temazepam, Flurazepam, Estazolam, Quazepam, Eszopiclone</td>
<td>Anxiolytic, Myorelaxant, Antidepressant?</td>
<td></td>
</tr>
<tr>
<td>α_4</td>
<td></td>
<td>Analgesia</td>
<td>Ataxia, Amnesia</td>
</tr>
<tr>
<td>α_5</td>
<td>Triazolam, Temazepam, Flurazepam, Estazolam, Quazepam</td>
<td>Myorelaxation</td>
<td>Cognitive Impairment Tolerance</td>
</tr>
</tbody>
</table>

Conclusions

• Targeting pharmacologic treatment specifically to insomnia can significantly improve sleep and reported daytime function and QOL
 – Further studies needed to determine
 • Optimal duration of treatment
 • If treating insomnia decreases relapse rate
Conclusions

• Effects of treating insomnia on antidepressant response are variable
 – Esz but not Zolp appears to augment antidepressant effect; Clonazepam?

• Further studies needed:
 – To confirm antidepressant effect of ESZ and mechanism (α_2, α_3 ?)
 » To determine if antidepressant benefit is sustained and if there is decreased risk of relapse
 » To determine if ESZ alone is antidepressant
 » With other (α_2, α_3 ?) agents
 – Relationship between antidepressant and sleep effects
 » Do drugs with sleep benefit and antidepressant effects have greater augmentation effect?